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ABSTRACT

HUGHES, GEORGE CRITTENEN. Convergence Rate Analysis for Iterative

Minimization Schemes with Quadratic Subproblems. (Under the direction

of JOSEPH C. DUNN.)

A large class of descent algorithms is analyzed for the problem

min1 f, with S2 a convex subset of a Banach space X, and F:X -R ! a

differentiable functional. At each iteration a feasible direction

xn - xn is determined, where n is a solution to the subproblem

min {(f'(xn), y - xn ) + 1 (M (y - xn) , y - xn)I with (Mn} a sequence

of nonnegative linear operators with a uniform upper bound, and step

lengths are obtained from Goldstein's rule. If f' is Lipschitz continuous

and Q is bounded, then limit points of sequences generated by this general

scheme are extremals. A "worst case" convergence rate estimate of

r = f(xn) - inf Qf = 0(n - 1 / 3 ) for convex f is shown to improve to 0(n - I

when either the condition numbers of the operators in the sequence {Mn }

are bounded away from zero or 0 < (Mnu, u) < (f"(x)u, u), Vxe I,

Vu E X, Vn > 0; under these conditions a hierarchy or rate estimates

exists ranging from finite termination of the process to r = 0(n- 1
n

depending on how fast f grows near a unique minimizer E, i.e., depending

on the value of v in either of the conditions (f'(C), x - 0 > ylx - r0'

or f(x) - f(E) > y4jx - Y1',  Vx E Q, some y > 0 and v E E[, -). A

similar hierarchy of rate estimates is established for Newton's method

(Mn = f"(xn)) also depending on the growth of the ccnvex functional f

near .

For twice differentiable, possibly nonconvex functionals f local

conditions on the growth of the quadratic approximation to f at in
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directions leading into Q are given as sufficient to insure linear or

superlinear convergence of the sequence (lix - Ell) when the iterates

pass sufficiently near & and the operators M are either uniformly positive
n

definite or satisfy certain standard quasi-Newton conditions.

These results have potential applications to problems in optimal

control theory.
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ABSTRACT

HUGHES, GEORGE CRITTENDEN. Convergence Rate Analysis for Iterative

Minimization Schemes with Quadratic Subproblems. (Under the direction

of JOSEPH C. DUNN.)

A large class of descent algorithms is analyzed for the problem

minQf, with fl a convex subset of a Banach space X, and F:X * i a

differentiable functional. At each iteration a feasible direction

x - x is determined, where i is a solution to the subproblemn n n

rain {(f(Xn), y - xn) + (M (y - n ) - xn)) with {n } a sequence

of nonnegative linear operators with a uniform upper bound, and step

lengths are obtained from Goldstein's rule. If V is Lipschitz continuous

and Q is bounded, then limit points of sequences generated by this general

scheme are extremals. A "worst case" convergence rate estimate of

r n = f(x n ) - inff = 0(n - / 3 ) for convex f is shown to improve to O(n- I

when either the condition numbers of the operators in the sequence {Mn}

are bounded away from zero or 0 < (MnU, u) < (f"(x)u, u), Yx 6 9,

Vu E X, Vn > 0; under these conditions a hierarchy or rate estimates

exists ranging from finite termination of the process to r = 0(n-1)n

depending on how fast f grows near a unique minimizer E, i.e., depending

on the value of v in either of the conditions (f'(&), x - ) > 0l - V

or f(x) - f(&) >dlx - 11v, Vx E Q, some y > 0 and ve [1, -,). A

similar hierarchy of rate estimates is established for Newton's method

(M = f"(xn)) also depending on the growth of the convex functional f

near &.

For twice differentiable, possibly nonconvex functionals f local

conditions on the growth of the quadratic approximation to f at F in
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directions leading into 0 are given as sufficient to insure linear or

superlinear convergence of the sequence lixn - C11) when the iterates

pass sufficiently near and the operators Mn are either uniformly positive

definite or satisfy certain standard quasi-Newton conditions.

These results have potential applications to problems in optimal

control theory.
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1. Introduction

Let f be a real functional on a real Banach space X, i.e., f:X +Pi,

and consider the following constrained optimization problem:

(P) min f(x)

=l

where 9 is a closed convex nonempty subset of X. A number of methods for

solving (P) generate sequences of approximations to the solution via the

following general process:

(1.1a) x n+l x Xn + WX ( n- xn) n[' 1

where

(1. 1b) xn E arg min Q(y)

Qn(y) is a functional which approximates f(y) near the vector Xn, and w

is a steplength parameter. Three examples of methods from this general

class are:

A. The conditional gradient method corresponding to

Qn f ' (xn ) , y - Xn)

here f'(x n ) is the Fr~chet derivative of f at xn, and brackets, (u, v),

denote the value of an element u E X*, the dual of X, operating on an

element v E X.
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B. The "relaxed" form of the method of gradient projection corresponding

to

Qn(y) =(f'(xn)I y -xn + j2-Iy - xnI 2  a > a > 0 for n > 0.
n

For this class of methods, X is understood to be a Hilbert space.

C. The relaxed Newton's method corresponding to

)+1 • fi (
Qn(y) = (f'(Xn)y y- xn )  2 (f(n)(y - xn ). Y - xn )•

When the functionals Qn(y) are properly chosen, the vector Xn -

will be a feasible direction, i.e., for sufficiently small w C (0, 11,

f(xn + w(Xn - Xn)) < f(xn) for w E (0, 7),

provided xn is not an extremal (see (2.1)). There are many methods for

choosing suitable stepsize parameters wn which will insure that

f(xn) < f(xn ) when x - x is a feasible direction. Most attempt to
n+l nn n

approximate the classical line minimization scheme in which one chooses

the smallest W satisfying
n

(1.2) min f(xn + W(xn - x )).

[0,l] n

For most nonlinear problems, however, (1.2) cannot be solved exactly, and

methods which approximate (1.2) are necessary.

In addition to determining feasible directions, the functionals Q n(y)

must have the property that subproblem (1.1b) is easy to solve relative

to (P). For methods such as the conditional gradient method or the method
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of gradient projection on certain simple sets such as those often found in

optimal control theory, (1.1b) is trivial. For more complicated functionals

% (y) and constraint sets n, the utility of such methods becomes question-
able. A number of authors have devised variations of the basic scheme to

make the subproblem (1.1b) more feasible. Han [1] and Garcia Falomares

and Mangasarian [2] minimize

Qn(y) = (f'(x), y - x.) + (M(y - y - x

over an approximation to S defined by linear inequalities in n . In their

method {Mn I is a sequence of operators which approaches the second derivative

operator of the Lagrangian of f and the constraints defining 9. Bertsekas

[3] uses a hybrid Newton method similar to gradient projection on simple

sets such as orthants and cubes in]Rn. Such modifications can have consid-

erable practical importance in special cases; however, theconvergence

behavior of the basic method (1.1) itself is still only partially understood.

The purpose of this thesis is to establish the convergence properties

of the class of algorithms (1.1) in which Qn(y) is of the form

(1.3) Q(y) = (f'(xn), y - xn) +2 (Mn(Y - Xn) Y xn

where each M is a nonnegative bounded linear operator, i.e., M e BL(X, X*)nn

and

(1.4) 0 < (MnU , u), Vu G X.



Although many different stepsize rules have been investigated for methods

in this general scheme (GS), the essential differences in the algorithms

lie in the selection of the operator sequence {Mn I and not in the method

of choosing the stepsize. In fact, a number of papers have compared major

stepsize rules (see, e.g., [4], [5], [6]), and the basic conclusion is

that differences in convergence rates are minimal. In the analysis to

follow, the Goldstein rule described in Chapter 2 will be used since it is

prototypic of the rules for approximating line minimization (1.2). There

are several good reasons for carrying out the analysis in the setting of

a general Banach space; in particular, by retaining the maximum degree of

flexibility at the outset it is possible to obtain sharper bounds on

convergence rates for function space minimization problems later on

(see Remarks 3.2, 4.2).

The methods in the (GS) have for the most part been analyzed quite

thoroughly for convex differentiable functionals f with "regular" minimizers.

However, when f is non-convex orwhen singularities exist at the minimizers,

the analysis has been less thorough and in some cases sketchy. Recent

work has focused on understanding the behavior of the algorithms under

these less tractable conditions. The following brief review of the major

results on convergence and rate of convergence of methods embedded in the

(GS) will put into perspective the results of this thesis.

In Chapter 3 it will be shown that when X is a Hilbert space and

M iI, where I is the identity operator, then the (GS) is the same asn
n

the method of gradient projection introduced by Goldstein [7) in which

.n+1 (xn -nf(Xn ))"
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Here P is the operation of projection onto 11 and Vf(x n ) is the Hilbert

space representor of f'(xn) in X. The parameter an is chosen to insure

convergence with stepsize parameter w = 1 for n > 0. Levitin and Pollakn

[8] first gave rate of convergence results for this method for convex f

using the "threshold" rule

(< 2(1.6)~ 0 1 ( n - L + 2 '  2 > 0

where L is a Lipschitz constant for f', i.e.,

L > sup 1fx-
x fyEix
x~y

For functionals satisfying the uniform convexity condition

and 0 < u < p <

the values r = f(xn ) - inf f converge linearly, i.e., r = O(Xn) for somen n n

X E [0, 1). In the absence of (1.7) the convergence of {r } for convex
n

functionals will be at least like 0(-) . Similar results were obtained

by Demyanov and Rubinov [9] who investigated four variations of relaxed

gradient projection in which the sequence (a } and the sequence of stepsizen
Parameters {w } are selected by combinations of threshold rules like (1.6)

n

and line minimization (1.2). Dunn [10] found that the method (1.5) with

the sequence {c } determined by a Goldstein-like rule converges linearlyn

if the functional grows near an optimal point, or extremal, E S, like

the square of the distance from 9, i.e.,
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(1.8) f(x) - f() > Yilx - 01 2 
, E 9, Y >0.

This occurs when (1.7) is satisfied at x = { or when the structure of the

set near the extremal is such that

(1.9) (f,( ), x - >lx - &112, vx , y>0,

since in the case of convex functionals (1.9) implies (1.8). In fact,

Dunn was able to show for a wider class of functionals which are pseudo-

convex in the sense of Mangasarian [11], that a complete hierarchy of

rates can be determined from the condition

(1.10) f(x) - f() > '11x -11 Vx E Q, v E [1, Y), > > 0,

ranging from finite termination of the process (i.e., x. = for some

N > 0) when v = 1 to rates approaching the "worst case" rate of 0(1 ) asn

v assumes larger values.

The conditional gradient method [8], [9], [121 results when the

operators Mn in the (GS) are the zero operator for n > 0. With steplength

rules of the line minimization type, this algorithm was shown in [8] and

[9] to converge at the rate r = 0() for convex functionals with Lipschitzn n

continuous Frechet derivatives on convex closed bounded sets. In these

investigations, however, it could not be shown that conditions of the

sort (1.7) had any effect on the convergence rate of the conditional

gradient method (c.f. gradient projection method); a linear convergence

rate was established only under certain strong uniform convexity

conditions on the set 0 when f'(&) # 0. In fact, an example of Canon and

_ _ _ _ _ _ _ _ _ _ _ _j.



Cullum (13] shows that even when (1.7) is satisfied a rate of O() can
n

not be improved upon without imposing conditions on the set 92. Dunn [4]

proved that uniform convexity of C2 is actually a very strong sufficient

condition for linear convergence of the sequence (rd} and that the weaker

condition (1.9) will suffice. Dunn [14] has also shown that, as in [10],

a hierarchy of convergence rate upper bounds exists for the conditional

gradient method depending on the value of the parameter v in the condition

(1.11) (f'( ), x - E> Ylik - liV, Vx e 9, v E [l, -), y > 0.

Conditions of this type are satisfied in various Banach spaces by

"bang-bang" optimal controls (4], (17] (see Remarks 3.2, 4.2).

Allwright [151 and Barnes [16] both considered variations of the (GS)

in which specific operator sequences {Mn } are used in certain optimal

control settings. Allwright specified operators which have the property

(1.12) 0 < (MU , u < ( f"(x)u, u), Vx E Q, Vu E X, Vn > 0.

Although he was able to prove convergence using a stepsize rule similar

to Goldstein's on bounded sets with convex functionals, he established a

linear convergence rate for the sequence {rn } only when {Mn } satisfies

(1.13) ,.UIuI < (MnU, u)9 Vu 6 X, Vn > 0, > 0.

which with (1.12) implies (1.7). Barnes also required condition (1.7)

with operators satisfying (1.13) to achieve linear rates for {rn }.

If f is convex the operator f" is certainly nonnegative on 9 and

the Newton methods treated by Kantorovich [18], Goldstein [191, and

----------------------------------------
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Levitin and Poljak [8] are formally in the (GS) with M - f"(x n ) fornn

n > 0. Very little has been written alout convergence rates for Newton's

method in the absence of the regularity condition (1.7) or when the second

derivative operator is not at least positive definite at the extremal.

Levitin and Poljak [8] who first broposed the constrained version of

Newton's method with xn+1 = xn, relied on condition (1.7) to prove super-

linear convergence of the sequence {lix n - to zero. Danilin [20]

gave a proof of convergence of the method for convex functionals on

bounded sets with a stepsize ruleAsimilar to Goldstein's but, once again,

required condition (1.7) for rates. It was stated by Bulavskii [21] for

finite dimensional spaces thatcondition (1.7) can be relaxed to a condition

on the growth of the secondirder approximation to f at the extremal C,

namely

A

(1.14) (f'(4), x - + 1 - ), x - > yljx -

V xEa, y>O.

For convex functionals tb'- condition insures superlinear convergence of

the sequence {1lxn - &I}. Dunn [221 independently formulated and proved

the same result in general Banach spaces and showed that when (1.14) holds

with the exponent 2 replaced by 1, then finite termination of the process

occurs.

The results mentioned so far have been restricted to convex or

pseudoconvex functionals. Although a number of articles have given

convergence results for these methods for general non-convex functionals

(e.g. [23], [51, [24]) there are very few convergence rate results. For
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projected gradient methods Goldstein [23] proved that positive definiteness

of the second derivative operator at a local minimizer E is sufficient to

give a linear rate of convergence of the sequence {IIx n - EI} if xn -E

however, for constrained minimization problems, this condition is rather

strong. It was shown by Bertsekas [24] that the second derivative operator

does not even have to be nonnegative at an extremal to achieve linear

convergence in projected gradient schemes. For certain simple sets such

as orthants and cubes in JRn, Bertsekas proved that if the first derivative

at an extremal E is positive in coordinate directions leading into the

set and the second derivative at E is positive definite in the subspace

parallel to the manifold of active constraints, then iterates generated by

the gradient projection method and passing sufficiently near the extremal

will converge to the extremal at a linear rate. Similar conditions are

given by Han [1] and Garcia Palomares and Mangasarian [2] for their

quasi-Newton methods to achieve linear and superlinear rates of convergence

for sequences coming close enough to extremals. Their methods are modi-

fications of the (GS) as indicated earlier and are in fact included in

the (GS) when 0 is defined by linear inequalities in]Rn.

In Chapter 2 of the present thesis it will be shown that no matter

how the sequence (M } is chosen, as long as the operators are nonnegative
n

and uniformly bounded above, every limit point of the generated sequence

will be an extremal, and if f is convex the rate of convergence of {r In

will be r = O(n-1 /3 ) at least.

A number of results will be established in Chapter 3 for the (GS)

when (M } satisfies either condition (1.12) or a condition requiring a
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uniform lower bound on the "condition numbers" of the operators. Note
1

that in gradient projection methods, the operators 1 have condition
Cn

numbers equal to 1. The "worst case" rate of convergence for this subclass

will be 0(-) for the sequence (r I when f is convex. This extends then n
results reported by Denranov and Rubinov [9], who considered only bounded

sequences {an I for the relaxed gradient projection method. Their rate of

r = 0(-) holds for any sequence {a I which is bounded below and for
n n n

stepsizes determined by Goldstein's rule. A hierarchy of convergence rate

upper bounds will be established for this subclass, as was done in [10] for

the gradient projection method and [141 for the conditional gradient

method. When w is bounded away from zero the higher rates of convergence

depend on the growth rate of f near E (see (1.10)). On the other hand,

if wn can be arbitrarily small, then higher rates will depend on how

slowly Wn decreases, which, in turn, can be estimated in the presence of

conditions on the structure of the set near the extremal, i.e., condition

(1.11).

As indicated previously, results for Newton's method have been

superlinear rate estimates or better for the sequence {llxn - ell} under

regularity conditions like (1.7) or (1.14). In Chapter 4 it is shown

that a hierarchy of rates for the sequence {r I exists here for non-regularn

extremals when condition (1.11) holds with v in the range 1 < v < 5.

Although somewhat incomplete these results corroborate the belief that

even in nonregular cases, Newton's method outperforms the first order

methods. These ideas are developed further in an example from optimal

control theory.
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In Chapter 5 the results in (1], [2], [23], [24] for non-convex

functionals will be extended to the (GS) in Banach spaces. When {M nn
satisfies (1.13) or when (1.9) is satisfied at E and the second order

approximation to f at g satisfies

(1.17) (f,(E), x - ) +.L(f"(E)(x - E), x - o ;>Yl - or.

for x e K,(E) n BO (&) for some p > 0, where K (F) is the tangent cone

to 9 at & with vertex at &, i.e., K,(F) = {x E X:& + t(x - E) E 9 for

some t > 0}, and B (E) is a closed ball of radius p around E, then if theP

sequence of iterates comes sufficiently near &, it will converge to

and f(x n ) - f(t) = 0(,n ) for X E (0, 1). Condition (1.17) need hold only

for x E Qn f B (E) if M is symmetric as well as nonnegative and Mp n n

approximates f"() in one of the following four ways: either

(1.18) limn - f"(0)II < C,

for c sufficiently small and n > N > 0, or

1(M - f,,(&))(x - )11
(1.19) llx- Ell F'

for e sufficiently small and for x C 0 and n > > 0, or

(1.20) I1-' - f"( )la n co

or

I(mn - f"(0)%x- )11
(1.21) lix - El1 0, for x E 9 as n-.
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For sequences in which xn comes close enough to for n > N, xn

will converge to & at a linear rate of convergence when either (1.18) or

(1.19) is satisfied by {M n}, or at a superlinear rate of convergence when

either (1.20) or (1.21) holds. Conditions (1.18) - (1.21) and symmetry
of the operators in {M n } are typical conditions placed on quasi-Newton

operators in the literature (e.g., [25], [2], [26]).

It will be assumed in what follows that at each step of the (GS) at

least one solution to (l.1b) exists. The existence question for (l.lb)

can and should be separated from the convergence rate analysis (e.g.,

topologies suitable for treating the former may be inappropriate for the

latter). In any case the emphasis here is on convergence and rate of

convergence properties of sequences in the (GS), on the assumption that

such sequences exist.

-------------------------
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2. General Convergence Results

A necessary condition for a vector x to minimize a differentiable

functional f on a convex set 9 is that x be an extremal, i.e.,

(2.1) (f,(x), y - x> >0, Vy 6 1.

If f is pseudoconvex (and, in particular, convex) then (2.1) is also a

sufficient condition [ii). A differentiable functional f is pseudoconvex

if and only if (f'(x), y - x) > 0 whenever f(x) > f(y) and x, y E Q.

Most of the results to follow for convex functionals can be extended to

a broad subclass of pseudoconvex functionals discussed in Remark 2.4.

The general scheme outlined below is designed to construct a sequence

{x.} whose limit points are extremals of f on 9.

Let xn be the nth approximation to the solution of (P) generated

by the (GS). Recall that in this scheme, the vector x is determinedn

by

(2.2) in E arg mn Q(M n , y),
enn

where the functional Q(Mn, x, y) is defined by

(2.-3) Q(M , xn y) = (f'(xn), Y - Xn) + -(M(y - xn ) y-x .

It will also be required that the sequence of nonnegative bounded linear

operators (Mn } be uniformly bounded above, i.e.,

(2.4) JIM_ 11 < K, Vn > 0, and K < -.

. . ._r-
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The next approximation is then given by

n l = W * Xn - Xn),

where the stepsize parameter un is chosen by Goldstein's rule (23] and

is computed at each iteration as follows: Define

S , = .(x) - f(x + W(i.- x))g~fxx) x-, W

when (f'(x), x - # 0. Fix 6 6 (0, .) and if g(x 1 n ) > 6 then

set w = 1; if not, determine any w C (0, 1) for which

(2.5) 6 < g(xnt 'ns w) <l-6

and setw n = w. If(f'(xn),x -Xn ) =0, setw n = 0.

It will always be true that (f'(xn), xn - Xn) > 0, and

(f'(xn), xn - Xn) = 0 if and only if xn is an extremal (see Remark 2.1

below). Also, g(xn, in , w) is a continuous function of w on (0, I] by

the continuity of f, and lim g(xn , x n, w) = 1 since by Taylor's formula

W4*O

f(x n+w n-xn))-f(xn ) = f'(x n ,"n-xn) + o ( l 'n-xn

and, therefore,

g(x, W 2(w)

It follows, then, that Goldstein's rule when used in the (GS) is well

defined and will determine w after a finite number of calculations,

n .
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since if g(xn, Xn , 1) < 6 then (2.5) is satisfied for w E [a, b] C (0, 1)

for some a # b. Normally some sort of bisection procedure is used to

locate an element of such an interval.

The following two lemmas are fundamental in what follows:

Lemma 2.1. Suppose that the sequences {rn I C [0, -) and {qnl C [0, c)

satisfy

k(2.6) r rn+l -- rn qn rn Yn > 0,

for k a fixed exponent in the range (1, -). If

qn Iq > 0,

then

(2.7) rn = 0(n- I/(k- l)

Proof. See [10], Lemma 4.1 for the proof.

Lemma 2.2. Let f be Frechet differentiable. Let M:X X* be a nonneg-

ative operator and Q a convex subset of a Banach space X. For any x'E Q,

let x e f2 satisfy

(2.8) e arg min Q(M, x, y).

Let

(2.9) --(x) {z Q:( f'(x), x - z) > 0

* * ~ - I *I
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Then for any z OW(x)

( f'(x) ,x-z)+ 1(M(x-i) ,x-i),if ( M(x-z,x-z)-0 o
1

(2.10) f,(x),x-i) >

1 (f'(x) x-z) 2  1min{ f'(x),x-z), ( -~z~) + ( (x-),x-D),

if (M(x-z) ,x-z)>0.

Proof. For any z E O(x) and any 0 G [0, 1] the convex combination

ze = x + e(z - x) is also in 9 since fl is convex. From (2.8) it follows

that for 6 e (0, i]

0 < (f'(x), z0 - x) + (M(z - x), ze - x) - (f'(x), i- x)

21(M(i - X), x - X)

or

(f'(x), x - ) (fW(x), x - Z 2 M(z X), z X)

1
+ (M(i - x), i - x)
2

By the linearity of f' and M one can write

2
(2.11) (f,(x), x - x) > 0<f'(x), x - z) - .- (M(z - x), z -X)

1

+ -(M( - x), -)
2

The sharpest bound is obtained by maximizing the right side of (2.11) over

61E [0, i. If (M(x - z), x - z) = 0, then letting 6 = 1 yields
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(2.12) fr(x), x - > (f,(x), x - z) + - x), -).

If (M(x - z), x- z) > 0, then

P(O) e=f,(X, x _ - e2(M(x _ z), x- z)

is a quadratic polynomial with maximum value at

(2.13)<f,(x), x - Z)z > 0.(2.13 e = M(x - z), x - - "

If e < 1, then from (2.11) with e =

(2.14) (f,(x), x > (f(x ) x - + -<M(x - x) X- .
2(Mx- z) ,x-z) 2

If e > 1, then it follows from (2.13) that

(f'(x), x - Z> (M(x - z), x- z),

and setting e = 1 in (2.11) yields

(2.15) (f'(x), x - > (f'(x), x - z) - 1 (f'(x), x - z)

+ 11M(x - x- -f (x) x - z) + M(x - x), x1,+x).
2 2 '2

The lower bound (2.10) follows from (2.12), (2.14), and (2.15).

QED

Remark 2.1. Lemma 2.2 shows that if at any step of the (GS) it is

determined that (f'(xn ), x - Xn) 0 then xn is an extremal. Suppose

it were not an extremal. Then for some y E Q, (f'(x ), y - xn  <

But that would mean that y E O(xn ) and from Lemma 2.2, that
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(f'(xn) xn X- n> > k(f'(Xn), xn - y) for some k > 0. Therefore,

(f'(xn), Xn - n > 0 and this contradiction shows that

(f'(Xn) , y - xn) >0, Vy 6 0, whenever (f'(xn), xn - in) = 0. Also,

for any x l, x 6 t(x), and letting z = x in (2.11) it follows that

(2.16) (f'(x), x - I) > (M(- x - > Vx E S1.

-2

If xn is an extremal then by (2.1)

(2.17) (f'(Xn), Xn - Xn) > 0.

From (2.16) and (2.17) one can conclude that if xn is an extremal, then

(f'(Xn), xn - ) = 0. Note also that if at any step of the process it

is determined that

(2.18) xn C arg mnn Q(Mn, Xn, y),

then xn is an extremal, since one can choose in = Xn, and that would make

(f'(Xn), Xn - n 0. If xn is an extremal, then (2.18) holds since, if

not, there exists a y E S1 such that

0 < Q(Mn , Zn) - Q(Mn , x n , y),

but since Q(M, xn , xn ) = 0, it follows from the definition (2.3) of

Q(Mn, xn, y) that

(f'(Xn), y - xn) < (Mn(y - xn), Y - x

which is a contradic-ion (see (2.1)). Summarizing the above remarks,

one has that xn is an extremal if and only if (f'('n), Xn - in) 0 if

and only if xn satisfies (2.18).

n
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Remark 2.2. Define 1f as the set of minimizers of f on Q. If f is

convex, then

(2.19) Sf C 9(x), Vx e 1.

This follows from the fact that for convex f, if & C .Qf, then

(2.20) (f,(x), x - V > f(x) - f(O) > 0 Vx 6 12.

If f is pseudoconvex, then it follows from the definition of pseudocon-

vexity that

(2.21) Qf C (x) for x E a - af.

For fmnctionals f on convex bounded sets Q the (GS) will produce

sequences whose limit points are extremals; this is shown in the

following theorem.

Theorem 2.1. Let 9 C X where X is a Banach space and 0 is convex and

bounded. Let f be (Frechet) differentiable and let f' be Lipschitz

continous with Lipschitz constant L, i.e., there exists an L > 0 such

that Ilf'(x) - f'(y)II <LIjx - yII, Vx, y • Q. Then f is bounded below,

{f(x )} is nonincreasing and converges to some limit I > inf f > - , and
nn

every limit point of a sequence {x n} generated by the (GS) is an extremal.

nnIf f is also convex, then the values r n  xn iffdces

monotonically to zero at least at the rate r = O(n- / 3), and limitn

points are minimizers.

i
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Proof. Using Taylor's formula and the Lipschitz continuity of f' one

can write

(2.22) f(xn)-f(xn*wn (I-x n ))=J( f'(X+e(x n+wn(in-Xn)-Xn)),wn (xn-i n))de

fw, •~2.Ixx~2
>( f(x ),Xn )-2Ln

From Goldstein's rule (2.5), if w < 1 then

f (xnM) -~ "(n+l)
f(x)-tx >1-6> +
nn n

and with (2.22) there results

1->- nX - n
2(f'(xn), xn - 'n )

which gives

26 (f'(x n), - >

(2.23) W > min{l, 2 Lxn n nn- LlXn _ nlr

Let D diameter 0 = sup Ifx - ylI. Then
x,yE:

(2.24) n > min{l, -i6 (f,(x x -n L 2 n n n

---
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Also from Goldstein's rule (2.5) one has

(2.25) f(xn) - f(xn+i) > I6wn(f'(xn), xn - n>

"26

6 min{( f'(Xn), in - &>, "gf'(xn)' xn - ) ,

and, therefore, f(x )- f(x n+) > 0 since (f'(x n ), xn - n n > 0 for

n > 0. It follows easily from the Lipschitz continuity of f' and the

boundedness of 9 that inf f > - and so

lim(f(xn ) - f(xn)) -0,

which, in turn, implies that

lim (f'(xn), xn -dx) = 0.
n-),

Thus, if & is a limit point and {x } is a subsequence converging to E,nk

then

(2.26) lim(f'(x n), x - x = .
nn k nk k

Suppose that & is not an extremal, that is, for some z E

z - 0 = -a < 0.

Then by the continuity of f' and the fact that x n it follows that

lim (f'(x ), z - x ) = -a,n nk nk
nk k

and, therefore, there exists an N > 0 such that for nk > N

(xnk), z - x -2
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or

<f,(xnk) xn Z > > 0.
k~ nk -2

This implies that z E O(x ) for nk > N. Therefore, by Lemma 2.2,
k

assuming (x n - z), x n- z) > 0, one obtains
nkfk (k

(ff(x ),x - Z)

(2.27) f(I'(x ), x - ! >-min( (f (x ), x - ~ z k
n- k 2 n k n k Z n'( kx -z)

1 uinIl ), x n k X 2

2min( fI ), xnk z), kD2

2k 2

! min{, a2 > 0.
2 2' 4KD2

If (M (x - z), x - z) 0, then
nk nk n

(2.28) (f'(x ), x x > a> 0.
n k nk n k -2

But (2.27) and (2.28) contradict (2.26) and it follows that

f()z - ) >0, Vz E a.

Let f be convex, then since any extremal. is a minimizer, one can conclude

that any limit point E af. For every n > 0 let zn E Q be such that

f(x ) (z > 1 -f(x ) f) i1 r Then z E (xn) since by the
n n -2 n f 2 n  n n

convexity of f one can write

1

(2.29) (f'(x) Xn zn > f(x-- f(z) > 0.

n~~~ n



23

Therefore, by Lemma 2.2,

1 (f'(xn), xn  z) 2

(2.30) (f'(xn), xn - Xn) >-min{( f'(x n), xn  zn, KD 2

2

r r> min{-R, " I > 0 ,
-2 2'KD2

and (2.25) yields

(2.31) f(xn) - inf f - f(xn+ I ) + inf f

2 2 1
r r 2 r 6r

6 min{, n n n
-- 8KD2  8LD 32LK2 D

Since lim(f'(xn ), x - xn = 0, it follows from (2.30) that r n 0, and
n--

from (2.31) with r sufficiently small one hasn

14
rn+l< rn - qr , for q > 0,

and the rate r = 0(n-1/3 ) follows from Lemma 2.1.n

QED

Remark 2.3. In proving that every limit point is an extremal, the

crucial fact is that

lim (f'(x n), Xn - xn) 0.

As shown in the theorem, this will be true for any operator sequence

{M I in the (GS) provided that 0 is bounded. The condition of boundedness
n

canbn be established that n >-  > o, for all n > 0,

and inf if > -w. In the next chapter it will be shown that the stepsize

0

_____"
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parameters are bounded away from zero when the operator sequence {Mn }n

satisfies (1.13) and for certain other methods in the (GS). In these

cases the theorem is true for 11 = X provided inf f > -.

X

Remark 2.4. It is easy to confirm from the proof of Theorem 2.1 and

1/3
Remark 2.2 that the convergence rate of O(n ) for convex functionals

can be extended to pseudoconvex functionals which satisfy

(2.32) (f'(x), x - E) > K(f(x) - f(&)) Vx E 9 - f2f, V& e f, i > 0.

In [10], Dunn establishes (2.32) for a large subclass of pseudoconvex

functionals which includes certain concave functionals.
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3. Convergence Rates for Convex Functionals

In the previous chapter it was shown that for any sequence of

nonnegative operators, bounded uniformly above, the "worst case"

convergence rate of sequences {f(x n) - inf f) generated by the (GS) is

1/3 Q
0(n -  ) for convex f. In [8], [9] and other references, however, a

"worst case" rate of r = 0(-) is established for the conditional
n n

gradient method and the gradient projection method. In Theorem 3.1 it

is shown that the rate r = 0() holds for a large class of methods inn n

the (GS) whose operator sequences satisfy either of the following two

additional conditions:

(3.1a) u huh2 < (M u , u) < uuhI, Vu E X, 0 <u< < ao

for n > 0,

with

(3.1b) > a > 0, for n > 0,

.n

or, if f is twice Frechet differentiable and

(3.2) 0 < (MnU , u) < (f"(x)u, U), Vu E X, Vx E Q for n > 0.

Note that Allwright [151 specifies condition (3.2) in his method.

Also, the conditional gradient method, which uses Mn = 0 for n > 0, is

admitted by condition (3.2) for convex functionals, since f"(x) is

nonnegative on Q in this case. Methods whose operator sequences satisfy

(3.1) include Barnes' method [16] and the method of gradient projection

in Hilbert space in which

.. . . ....
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(3.3) Xn = P (xn n Vf(xn))

The operation of projection of x. anVf(x n ) onto Q, for a > 0, is

equivalent to solving

(3.4) Xn = arg rain {(Vf(xn), y - xn ) + 2y-XnI},
On

since (3.3) is defined as

(35) 1 n arg min [ly - (xn - QnVf(Xn))11 2

or

(3.6) X = arg min{2a (Vf(Xn,yX n + Xn 2 + anIVf(xn)1I 2},
yEQ~

the solution of which satisfies (3.4). The operator M = -I in (3.4)
n a-n n

clearly satisfies (3.1) with h = Un '- The relaxed gradient projection
n

schemes in Demayanov and Rubinov [9] specify explicit upper and lower

bounds for the sequence {a n}. Condition (3.1) does not need that

restriction, although the requirement (2.2) that {M n } be bounded above

imposes a lower bound on {a n}.

It is interesting to note that the method of gradient projection is

imbedded in a larger family of Hilbert space variable metric gradient

projection methods in which at each step the projection operation and

the determination of the gradient is carried out with a new inner product.

Thus, if Mn is an operator satisfying (3.1a) then as an operator in the

(GS) it can be assume that Mn is symmetric, i.e., (Mnx, y) = (Mny, x),

M + M*
Vx, y E X. This is true since (MnX, x) = (n( n )x, x) where M *2 n
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M +Mn
operator of M on X and n 2 is symmetric. Therefore, one cann2

M + M
consider the sequence {Mn} equivalent in the (GS) to ( n 2n Then,

with Mn symmetric and positive definite a new inner product is defined

by

x, Y)M = (MnX, y).
n

Although the Frechet derivative is the same for all of the related norms,

the representation of V changes with the inner product, since

f'(x)[y] = (Vf(x), y) = (MnM n- Vf(x), y) = (Mn -iVf(x) ' M
n

The variable metric version of (3.3) is now

n = PM (xn -I..'n-lVf(xn))
n

or equivalently

X =arg min {( 7f(x ) , y - xn ) + 1 (Mn(Y -Xn) , Y -Xn)}.

An example of variable metric projection which is commonly practiced

in computations in ]Rn is the technique of "scaling", in which the operators

Mn are represented by diagonal matrices D . In one scheme, for example,
n n 2f

entries on the diagonal are second partial derivatives, 2-, of the
ax.

functional f. Although such ad hoc methods can make matters worse,

they can also accelerate convergence, and on simple sets such as orthants

and boxes, the process is no more difficult to carry out than "standard"
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gradient projection. Notice that the condition number - of a diagonal

n
matrix is the ratio of smallest to largest diagonal entry; therefore,

if that ratio is bounded away from zero for n > 0, then the scaling

procedure satisfies (3.1).

The "unrelaxed" gradient projection methods considered by Levitin

and Poljak [8] and Dunn [10] in which wn = 1 for n > 0 can be considered

as part of the (GS) provided 6 is sufficiently small. In both cases

the methods used to select the sequence { n} are such that at each step

Goldstein's rule will select w. = 1 if 6 is small enough. For example,

Levitin and Poljak require that a be chosen from the interval

[cis 2 2 1 for £is2 > 0. From the definition of g(xn, X ) in

Goldstein's rule (2.3) and from (2.17) one obtains

(3.7) g(Xn' Xn 1) > 1 - - I
2(Vf(x 

n ), x - n

when ,n is not an extremal. Also, xn minimizes the functional

Q(-I, X, .) over 0, and is therefore an extremal of Q(-I, X, .)
n n

satisfying (2.1). In this case (2.1) reduces to

(i Z > 0, V z C- Q,(VQ( LI , x, n ), z - xn 0,
n

or

(3.8) (Vf(xn) + X- X)z >- 0-, V-zC .
n
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By letting z - in (3.8) one can write

(3.9) (Vf(xn), xn - ^n ._ i n - Xn n 2.
n

If < , then (3.7) and (3.9) given-L+c 2

La
g(2c ,x 2.n1

n n'

L
L + e 2> 1 --- L

Thus, Goldstein's rule yields w =1 if 6 < 1 Once again then -- L+e

lower bound 0 < e a Gn gives the uniform upper bound required by the

(GS).

The following theorem gives a "worst case" convergence rate

estimate for methods in the (GS) when either (3.1) or (3.2) is satisfied.

As noted above, a large number of well known methods are included in

this subclass of the (GS).

Theorem 3.1. Let Q C X where X is a Banach space and Q is convex and

bounded with diam S2 = D. Let f be convex and differentiable with f'

Lipschitz continuous on Q, and let L be a Lipschitz constant for f'.

Then inf f > -- and if the (GS) operator sequence {Mn } satisfies eithernn

condition (3.1) or (3.2) then the value rn = f(xn ) - inf f will decrease

monotonically to zero and r =n n

Proof. As in Theorem 2.1, lines (2.24) and (2.25) one has

26(f'(xn) x - x

(3.10) f(xn ) - f(X+) > 6 min{l, Xf(xn n n
Lx n - n n
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Also, inf f > follows easily from the Lipschitz continuity of V and

the boundedness of Q. Therefore, for every n > 0 let zn be such that
1 1

(f(x n ) - inf f) 1 . Then, as in Theorem 2.1, since
f('n) - f(z n ) 12" = 2" rn .

f is convex one can write

(311 >I r>0
(3.11) (f'(xn), xn - zn ) > f(xn) - f(z n > 2 rn _

and zn e O(Xn) for all n > 0. If (3.1) holds for {Mn}, and if xn is

not an extremal, then Lema 2.2 gives

(3.12) (f'(x ), x n - ) > [min{(f (x n  x ), (f'(xn ). Xn Zn2

-2 . nn(Xn - n ), x .

With (3.11), (3.12) becomes

r r

(3.13) (f'(Xn), xn - xn >{min{-r h(M(X _ Z -(f'xn) Xn - 2 4(M' ( z),

+ (Mn(x - Xn ) X- ]nnn

and since all terms in (3.13) are positive it follows that both

21 r r"

(3.14a) (f'(x) xn -n> - min{ , hMn(xn Z) Xn Z

and

(3.14b) (f'(xn)' Xn - X --> (M(x x Xn), Xn n "

n n n 2
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Therefore, using appropriate combinations of (3.14a) and (3.14b) one has

LIx - 11f2

2 rn2 n ) n x --'

>--mi{4Llr r 1- ' Lln - (Mn( Xn l), x -)

(315 - nkn Xn Zn)

2 2
1rn rn 1--1 min{ n n n

- Llxn - ,n I2 4LJnIXn - Znx z

n 2
• = clr n cPTI n O.

- r 2 2* ' C 0
16LD2

Line (3.14a) can be written as

2
r r

(3.16) <f(x n ), - n > min{ ,.}n n n -- 2 2 K21,
4KD

and then (3.16), (3.15), and (3.10) yield

r r 22
(3.27) f(xn ) - f(xn+I ) 

>  8min{, 26crn

If (3.2) holds, then

r
(3.18) (f'(xn)' Xn -x n> >-n

This is true since with Taylor's formula and (3.2) one obtains for any

yEn

.1
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f(y) - f(xn) + (f'(x ) y - xn)

+ f"(x n + e(y - xn))(y - xn), y - xn(1 - e)de

(x)Y n+ -I(M (y x )Y.- xn)_f(x n) + ( f'(Xn), y - Xn> 2 g<n x - n)y-

- f(xn) + Q(Mn, x, y)

>f(xn) + Q(Mn' Xn9 i)'

With y = z, it follows that

r
-Q( , Xn) > f(xn - f(z >--

or

r

(f '(Xn) -'n n- xn ) - (nn -n) Xn n -2

and since M is a nonnegative operator, (3.18) results. Combining (3.18)! n
with (3.10) one has

r 2(3.19) f(xn) - f(Xn+l ) > 6 min{_a r 2

-- 2LD2

By Theorem 2.1, {rn } decreases monotonically to zero, and with (3.17)

and (3.19), for rn sufficiently small, it follows that

f(x) - f(x n+) > 6c2r n2 for sore c2 > 0.n +1•2

_____________________________

.q



33

Therefore,

2rn+ 1 <_ n  2 cr n ,

and Lemma 2.1 gives the rate estimate rn .n n

QED

Remark 3.1. The proof of inequality (3.18) in the theorem is due to

Allwright [15].

Dunn [10] has shown that sharper convergence rate upper bounds can

be determined for the gradient projection method (1.5) in the presence

of conditions on the growth rate of the functional f near an extremal

F, i.e., condition (1.10). Condition (1.11), which expresses structural

properties of the set P. near C, implies condition (1.10), since when f

is convex,

(3.20) (f'(F), x - F) < f(x) - f(F)

is true for any minimizer E. For the conditional gradient method Dunn

[h], [l] requires the condition (1.11) to establish higher rates of

convergence.

In Theorem 3.2 it is shown that whenever it can be established that

the stepsizes are bounded away from zero, the growth rate of the func-

tional f near F, i.e., condition (1.10), is enough to give a hierarchy

of linear and sublinear convergence rate estimates for the sequence {r }.

When f' is Lipschitz continuous, condition (1.13) which requires that

operators in the sequence {M n} be uniformly positive definite, is

sufficient to prove that w > w > 0 since line (2.23) and Lemma 2.2 yield
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26(f'(xn) , xn -x
wn> min{, Lnxn n

(M M(x n -__n xn -

> min{1, n nn n

LtIxn - knip

and with condition (1.13) it follows that

Smin{, §111 >0.n L

Condition (1.13) is not required by Dunn [10] for the gradient

projection method (1.5); however, the condition wn = 1 is inherent in

the method, and upper bounds for the sequence {a n } in the gradient

projection schemes in [8) and [9] are equivalent to condition (1.13).

When f is convex, condition (.1.10) implies that E is a unique

minimizer. It is possible, however, that the set af consists of more

than one vector, in which case a more appropriate condition is

(3.21a) f(x) - inf f > ydx,, Vx E ,

where

(3-.21b) d(x) - inf lix - yl1.
YE~f

Note that conditions (1.10), (1.11), and (3.21) require that Qf be

nonempty.

Theorem 3.2. Let 0 C X where X is a Banach space and Q is convex. Let

I be convex and differentiable with f' Lipschitz continuous on Q, and

let L be a Lipschitz constant for f'. Let the (GS) be such that
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(3.22) wn > W , _Vn>0

and let condition (3.21) hold with v E [2, o.).

If v = 2 then (r I converges linearly, i.e., r for som

AIE (0, 1). If v > 2, then

/i(v-2(3.23) r = 0(n-vn

Proof. From Goldstein's rule, (2.5), and (3.22) there results

(3.24) f(X) - f(x ) > 6(f(x ), x >
n n+l - n n n n

> SO f'(xn), xn - Xn).

As stated in Remark 2.2, for convex f and any y E fs one has

(f'(X n), x n - y) > r n > 0.

Therefore, by Lemma 2.2 and for any y E f, it follows that if x # y

(3.25) 
r, if (M(X - y), x -n y) =

5 mn{r, (x --_>
2-m n9n (Mn(X n- y), xn - y>

if (Mn(x - y), xn -y) > 0

21 r
>1 min{r n
- 2n K x -
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Let (yn) E9 be such that for n > 0

llx n - ynll 1 2d(x) = 2 inf flxn - yII.

Then for v = 2, condition (3.21) yields

2 r2

(3.26) a - > nY2 > I Kr n
KI~xn

and for v > 2, since rn2 /v > Y2 /vd(Xn) 2 it follows that

rn2 2/v (2-21/v)
(3.27) KII xn>Y r n

Combining (3.24) - (3.26) one has with v = 2

f(x n ) - f(xn1 ) > 6wr minfl, 7} = qr, with q E (0, 1).

Therefore,

r+ I _(i - q)rn

which implies

r = 0((i - q)n) = 0 (xn).

If v > 2, then (3.24), (3.25) and (3.27) yield

f(x) -f(x (2minvr (-/r

pn

a +

• , -. ,,mom
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which, for rn sufficiently small, implies

r+l rn - qr n(22/) where q = 2

The rate (2.23) follows from Lemma 2.2.

QED

As with condition (1.10), condition (1.11) implies that the

minimizer C Is unique; however, an extension to a condition like (3.21)

is not possible here.

The following lemma, which is a modification of Lemma 2.5 in [22],

will be needed in the next two theorems.

Lemma 3.1. Let S2 C X where X is a Banach space and Q is convex. Let f

be differentiable, f' Lipschitz continuous, and let L be a Lipschitz

constant for f'. Let condition (1.11) hold at E with v E [1, c). If

{xn } is generated by the (GS), then

(3.28) II n - - -)n - for n >_ 0,

where K is the uniform bound on the norms of the operators M (see (2.h)).
n

Proof. From (2.2) one has for n > 0

0 < Q(Mn, Xn, E) - Q(Mn, X, xn )

or

(3.29) 0 < (f'(Xn), g - xn ) + 1(Mn(X - ),Xn-)(f'(xn),Xn n
nn 2 n nXn (n''n-xn)

L(M (x -i),x-2 n n n n
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From the positivity and the linearity of the operators Mn, there results

(3.30) 1 -( - ( -
2 nl2 nn

1 M(Xn  Xn) Xn

(Mn(Xn xn 21 n n n

2 n n n

2 n n 2 n n n

- U(Mn(n - ),X- ).
2 nnn

Furthermore, (3.29), (3.30) and the Lipschitz continuity of f' yield

(3.31) 1 -M ' -

2 n n 2 n )'rIn
+ 21 -M~ xn  E) + .2 < -n~ _ n

or

(3.32) (M ), Xn -0 + ( f'(&), Xn - E)

<- f'(&) - f'(Xn)' n - &) + Klxn - EllJ lln - Ell

< (L + K)jxn  - E!ll l n  - EIl

Finally, by the positivity of Mn and condition (1.11) one has

A i[n  _ Ellj < (L + K)ljx n  - I] [[n -& I•

QED
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When {w. can decrease to zero, condition (1.11) is used with

Lemma 3.1 to estimate its rate of decrease, as shown in the following

two theorems:

Theorem 3.3. Let 9 C X where X is a Banach space and 0 is convex and

bounded. Let f be convex and differentiable with f' Lipschitz continuous

on 9, and let L be a Lipschitz constant for f'. Let the (GS) operator

sequence {M I satisfy either condition (3.1) or (3.2), and let conditionn

(1.11) hold at with v E [2, w). If v = 2, then rn = O(An) for some

A E (0, 1), and if v > 2, then

V(V-1)

(3.33) r = 0(n v v-1-2')

Proof. As in the proof of Theorem 3.1, line (3.10 one can write

26(f'(xn), x - x )2
(3.3h) f(xn) - f(Xn+I) > 6 min{(f (xn),xn - n ) ,  n1.

n n lL nxn - Xni£"

Clearly, (3.11) is satisfied with zn = , and when (3.2) holds, (3.18)

and (3.34) yield

(3.35) f(x ) f(Xn+l ) > 6min{ r, n2

SLIIxn - nir

From (3.14a) and (3.15) in Theorem 3.1, where (3.1) holds one has

(3.36) f(xn) - f(xn+l)

6 1 r 6r nar

2 2n' Xn - Ir 4LIXn - r hLIIX -
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When f is convex, (1.11) implies (1.10), and as in Theorem 3.2, it

follows for v > 2

2r 2/v (2-21v)
(3.37) n >y

I!xn - - n

Using Lemma 3.1 with the triangle inequality one can write

!IXn - nll < I x - EII + I - 'il

1/ Ki(, -i) 11(,i
_<llx - EII + (i) ixn -

S(llxn -I(v_2)/(vi) (L Ki/(v-i) Xn /-- lx E l + )Ilxn E - / V l

Therefore,

2
r 2 r( 3 3 )n > n / ( -S 1 1 , _ )

(3.38) n (-2)/(v-l) + (--K- ) ) -1Xn_

2-2/(v(v-1))

> c3r/~

where

c3 ( 2i/(v-1)-l and D = diam Q.
(v-2)/(v-l)+ (I)n K )

(D

Since

2 2

(2--) <(2 ) for v > 2,
V V(V-1)



it follows that

(3.39) r n2-2/v > r 2-2/v(v-1)
n -- n

for rn sufficiently small. By Theorem 2.1, rn 0 and, therefore, (3.35)

and (3.36) can be written as

rn+ < r - qr q > 0,

for rn sufficiently small. The result (3.33) follows from Lemma 2.1 with

v > 2, and when v = 2, r = 0(Xn ) for some X 4 (0, 1).n

QED

Up to this point the emphasis has been placed on determining

convergence rates for the sequence {rn } = {f(x n) - inf f}. It is possible

that the sequence of iterates {xn } has no limit points, and a rate on the

sequence {r n } is the best one can do. Also, in most applications approxi-

mating the minimum value of the functional f is the primary objective.

Note that conditions (1.10) and (1.11) give convergence rates for the

sequence {(ixn - gll} when a rate for {rn } is known. If rn I Ax -E

for v > 2, then if rn = 0(n-k), it follows that Ixn - Eli = O(n-k/v).

Similarly, if v = 2, then linear convergence of {r I implies linear
n

convergence for {!IX -

In the following lemma, it is shown that condition (1.10) for

v E [i, 2) implies that condition (1.11) holds at C. (This is also

shown in [10] and [4].) In Theorem 3.4 this fact is used to show super-

linear convergence or finite termination for the sequence {fixn - &!I}

for any operator sequence {M n in the (GS).
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Lemma 3.2. Let n C X where X is a Banach space and n is convex and

bounded. Let f be differentiable with f' Lipschitz continuous on n and

for some & C n let f satisfy

(3.40) f(x) - f(g) > AItx - El", Vx V x , and vE [1, 2).

Then

(3.41) (f,(), x- ' _IIx - 1, Vx E 9, and some y > 0.

Proof. By Taylor's formula and the Lipschitz continuity of f (see line

(2.22)),

(3.42) f(x) - f() < f'( ), x - ) + RIIX - Ir, VxG Q, R < ,

and with (3.40) one has

Sf,(, x - E) > yIlx - $1" - RlIx - &IF

= (y - r- v)l - E1".

Therefore,

(3.43) (f,(), x -0 > Ix - $II Vx 6 r) B( )2 P

where B is a closed ball of radius p = (Le)t/(2 - )p 2R

p < D = sup 11Y - Fj <-, and let Y- = -(P-)"D . By the convexity of Q

it follows that for every x E n - B (C) there exists a number r E (p, D]p

and a vector y E Q with Ily - &II = p such that x - = -(y _ ). Therefore,

(3.43) yields for v E [1, 2)



h3

x - r= (f'( ), (y - &))p

2p Ily - Or

2p 
P

v-1
YP 

lix2DY_ 1 Ix-{1

yllx - O1 .

Since > y the lemma is proved for all x E 9.
2

QED

Theorem 3.4. Let 9 C X where X is a Banach space and 9 is convex and

bounded. Let f be convex and differentiable with f' Lipschitz continuous

and let L be a Lipschitz constant for f'. If for E E Qf,

(3.44) f(x) - f(&) > ylx - EIVK for some v e [1, 2),

and if {xn} is a sequence generated by the (GS), then {Ikn - EIl} converges

to zero superlinearly, i.e., either xn = E for some n > 0 or

llxn#1 - II

(3.45) lim jXn - Ell =0.

If v = 1 in (3.44), then xN = E for some N < .

Proof. By Theorem 2.1, r - 0 and, therefore, x n follows from (3.43).

Line (2.23) gives
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26<f,(x n) xn -_}
(3.46) W > minfl, . n n

n-LIIxn 
- ~n II

and, as in line (3.14a) with zn = t, one can write

2

(3.7) (f,(X) X n) > 1 minfrn n
-n nllXn - ir

Therefore, (3.46) and (3.47) give

6r 6r 2

(3.48) w n > min{l, n-- n .

- H n n oir' 4LK n - r ki1n - tlr

By Lemma 3.2 and (3.43) one obtains

x - v > ilk - II' ,  VxE a, Y- > 0,

and Lemma 3.1 yields

(3.49) Iln - t -1 < (L + K) iIxn _ l , for n > 0.
Y

Therefore, for v E (1, 2)

,.A
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n  1 (i xn - Ell + (l n - 4J11)

I/ (V-l)

(1 - ( I + (+K) lix - (2-v)/(v-l)-)= i nL+ K I (  I) _ i! -,1
< + ( + I D i )lnI- i

Y

S(i + (L+K l "lD(2-")/(v-l))llI, - II

Y

- c41x - Ell.

The lower bound (3.48) now becomes

6r 6r2

W >minfl, n n 4 '
n 2Lc4 

21kn a I2' 4LKc4 2 1kn - EiJ

and with (3.44) there results

o >
- min{l, 6y 6Y2

2Lc4h - IF1 -v' 4LKc 2 1in- 1j2(2-v)

Since lix - Ell - 0, it follows that = 1 for n N for some N > 0.

n =-lo Nfrsm

Thus, for n > N1 , (3.49) yields

I1Xn+l - Ell (L + K l/V-lix  11(2-)/(v-)
Tx- - EI 11- - n-

n Y

which implies (3.45). When v = 1, the finite termination of the process

follows directly from (3.49), since
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JRn - & 11 _ (L + K)tkn - II It n - 11

is true for n > 0, and if IIxn - < 1 < then IIx n  - I = 0.

QED

Remark 3.2. Dunn [4), [171 has shown that conditions (1.11) and (1.10)

can be established for certain extremals found in problems from optimal

control theory. Let U be a nonempty convex set in Rm, and let the

constraint set 9 be the set of functions

= (measurable u('):[O, i - U}.

Here f, the functional to be minimized, is defined and differentiable on

a neighborhood of 2 in one of the spaces LP( o, 1 ], ]Rm) and problem (P)

becomes

min f(u('))u(. )IE

Condition (1.11) at an extremal function () becomes

(3-50) (f'(V(-)), ' ) - E(..)) YN -( ) - ')II1

p

where, in this case,

( f' ( . ) ,u ( ) f ( )) = y(t ) (u (t ) - E(t ))dt
0

with y(-) the (unique) representor of the Frechet derivative of f'(&())

in the conjugate space Lq([o, 1l, 2m) with q = p/(p - 1) and

lIu( ) 1 J() I u ( t )  - (t)lr d t ) I1 / p •

0o
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In [17] it is shown that if U is a boundedpolyhedron in)? and if F(),

is a certain type of "bang-bang" extremal, then values for v can be

calculated directly from such factors as the number p and the growth

properties of a scalar "switching function" s(t) on [0, 1] determined

by y(t) and Q. For example, if f is convex, U is [-l, 1] C R, and y(t)
1

is continuous, nondecreasing, and has an isolated zero at t = - , then

22

(3.51) &(t) (_[-, i], t = .1
+1, t E_ 1o 1

2

1 l

and v in (3.50) has the value 2 and 4 in L1 and L2 respectively. Thus

by Theorem 3.2 the gradient projection method, which is limited to the

Hilbert space L would generate a sequence of iterates whose convergence

rate estimate is f(u (') - f(C(')) = 0(-L-); a simple example with
n2 n

minimizer (3.51) shows that this estimate cannot be improved. On the

1other hand, the conditional gradient method makes sense in L , and for

v = 2 this method converges linearly according to Theorem 3.3. Note that

the analog of Filber" :-- -ce -_'%d_ 'c' in which M = -LI in
n CL

n
the (GS) is a method in which Q(y) = (f'(x), y - + -i1y - x I1

nis minimized at each step. This method is not formally in the (GS);

however, Lemma 2.2 and Theorems 2.1, 3.1, and 3.2 could be modified to

give the same results for this method with 0 < a < a < b < , Vn > 0,

n
-- n -
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and in the example (3.51) above the convergence rate in L would be at

least linear. Its feasibility in L1 , however, is questionable.

Remark 3.3. The results of this chapter are readily extended to pseudo-

convex functionals satisfying (2.32) in Remark 2.4, when nf is nonempty.

-



49

4. Newton's Method

When f is convex, f" is nonnegative and symmetric (see, e.g., [22]),

and Newton's method, in which Mn = f"(x n), is in the (GS). The "worst

case" convergence rate of r = O(n-1/3 ) given by Theorem 2.1 whenn

II f"(x) 1 < K, Vx 6 C1, seems far too conservative, since in the regular

cases for which convergence rate estimates exist, the rates for Newton's

method are clearly superior to those of such first order schemes as the

gradient projection method and the conditional gradient method. On the

other hand, f"(xn) need not satisfy either condition (3.1) or (3.2), and

so Theorem 3.1, which gives the rate 0(.), does not necessarily apply

to Newton's method. The fact that Mn = f"(x n ) in Newton's method,

however, can be employed to strengthen a number of the fundamental

inequalities used in previous theorems, and convergence rate estimates

for Newton's method will be shown to be better than those of the first

order methods in a number of less than regular cases.

The following two lemmas improve inequalities (2.23) and (3.28)

when f" is Lipschitz continuous on Q, i.e., when there exists an L > 0

such that Ifjf"(x) - f"(y)I < Lik - yIl, Vx, y E 0.

Lemma 4.1. Let a C X be convex, where X is a Banach space. Let f be

convex and twice differentiable, f" Lipschitz continuous on Q with L a

Lipschitz constant for f" on Q, and let f" satisfy f"(x) I < K <

Vx C S1. If fx n is a sequence generated by the (GS) with M = f"(xn

then for any y belonging to the set q(x ) in (2.9),
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1
( " Xn 'X -y 2  -12

in{( f((x ) , x -y),x--
n n (f"(x n )x n-Y),X n-Y)

n nnn

if (f"(Xn)(Xn-Y),X n-Y) > 0

26( f'(x )
min{6, ( ) ,

if (f"(Xn)(xn-y),Xn-y) = 0.

Proof. If w n > 1 and xn is not an extremal, then Goldstein's rule and

Taylor's formula yield

(4.2 6 >f(x n ) - f(x n _+ wn('n -xn))

W( f'(x) Xn - >

2
WW (f~ n (,,( _ q

n n n n 2 n n n n n

Wn(f'(x n ) xn n n

where

=x + en(x n + W - x ) - x)n n n n n n

=Xn + enn(Xn - x) for some en [0, 1].

n n n n nn
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It follows from the Lipschitz continuity of f" that

n f"(Xn) 
n - Xn , 

n - Xn
(4.3) 1- 6 > 1 (, 'n)' n n n 'n

(f'(x n), x~ n-

an ( (f"(x n - f"(4 n )( n -c) x n

+ 2 n- n n in) n n
(f,(xn) ' xn - kn )

(f"(x)(Xn n ) ' xn - in) n X n113

- n 2( f' (xn) xn - x' nn

and one obtains

26( f'(x n Xn n

)(x n ), X n n ) + L 6nikn n 113

Let y E D(xn) and assume (f"(n)(xn  ), xn - y) > 0. Then Lemma 2.2

and (4.4) yield

(x f n ) x ,-Y )
min{( f' (xn) ,x-y) , f(X X + 6( f"(X)(x X) ,Xx

(4.5) --> (,,tn) (Xn n )x ,n_ n) + Lne n -nlnnl 3
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Suppose wan < 6. Then from (4.5) one has

(4.6) f" (x )(xn - in)' xn - n) -2 Ixn - i1

>w( f"(xn)(x n - i) xn - i n ) + w 2 LenX - nI3

> 6 min f {(f I(x ) x - y). (f'(X ) xn y) 2

'n). xn -  (. <f (xn)(xnY) Xn- Y)

+ 6(f (xn)(x n - in)xn n

or

(f,(xn)' Xn _ y)

( 6 min{( f'(x n), xn - y), f1,(xn)(x n -y),x n y
47) n > 

Ljx - X n

If (f"(xn)(x n - y), xn - y) = 0, then using Lemma 2.2 and the above

argument one obtains

2 26((f'(x ), x - y)

(4.8) W > -

n - L11 x n - n 11'

and the result (4.1) follows from (4.7) and (4.8).

QED

Lemma 4.2. Let Q C X be convex, where X is a Banach space. Let f be

convex and twice differentiable, f" Lipschitz continuous on 0 with L a

Lipschitz constant for f" on Q, and let f" satisfy IIf"(x)jj I K < -,

Vx E Q. Let be the unique minimizer of f in Q and suppose (1.11) holds,

i.e.,

*
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x > II x - Or Vx E Q, V e [1, -)

If {x n  is a sequence generated by the (GS) with M = f"(xn ) then

(4.9) PII - Ell -1 < (L)lx- act I.

Proof. From (3.31) in Lemma (3.1) one has with M = f"(x n

(4.1o) 1 (f"(Xn)(i - 0)' X " C) + (f'(E)' Xn C )2 n nnn

2n n ' n2 n n_ f()- f,(x), - 0 + 2(f"(x)(x n - ) -

+ f,,(, x -

Since the second derivative operator is symmetric and nonnegative, one

obtains with the Mean Value Theorem

(4.1) (f ( ' n - < <- ( ' ( n )  - n)' 'n -

+ (f"(Xn)(Xn - ), in -
+ fl nX n n

where n= Xn + n (C - x ) for some n G [0, i]. From (i.i) and the

Lipschitz continuity of f" there results

y &It'V<Llk - CJni < l Un - &I iIx n + &1I

< L{ n - Er llXn - &1 "

QED
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Using the results of Lemma 4.1 in the proof of Theorem 2.1 one can

easily obtain a new "worst case" rate of convergence of rn = 0(n
-1/2)

for Newton's method when f is convex. Lemma 4.2 can be used to prove

that a hierarchy of convergence rate estimates exists as in Theorem 3.3

when condition (1.11) holds at a minimizer; however, the estimates would

still be worse than those in Theorem 3.3. The following assumption on

the functional f near a minimizer & will give a hierarchy of convergence

rate estimates superior to those in Theorem 3.3, and Lemma 4.3 will

prove that the assumption is actually true for a large class of convex

functionals.

Assumption (A). If f is convex and E is a minimizer of f on 9 then for

some p > 0, some c > 0 and all x E Q f B (E)p

(f'(x), x - V 2 > c(f(x) - f(W))(f"(x)(x - ), x - V.

Although (A) is not true for all convex functionals, as an example of

Dunn [14] in the Hilbert space k2 shows, it is conjectured that (A) is

true whenever condition (1.10) holds at a unique minimizer of f in ST,

i.e., when the functional near the extremal grows like lix - Ell' for

some v E [1, -). The following lemma supports this conjecture.

Lemma 4.3. Let Q C X be convex where X is a Banach space. Let f be

convex, five times differentiable with f(5) Lipschitz continuous on Q

with L a Lipschitz constant for f(5) on Q, and suppose for some & E Q

f(x) - f() > ylx - & 5,  Vx C Q.

Then f satisfies assumption (A) at F.
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Proof. The proof can be found after the proof of Theorem 4.1.

Remark 4.1. Similar proofs can be given for (i)-differentiable convex

functionals with Lipschitz continuous ith derivatives when

f(x) - f(&) >ylk - Ei for i = 3, 5.

Theorem 4.1. Let 9 C X be convex and bounded where X is a Banach space.

Let f be convex and at least twice differentiable with f" Lipschitz

continuous on 9 with L a Lipschitz constant for f" on 9, and let f"

satisfy IIf"(x)II< K < -, Vx E 0. Furthermore, suppose that assumption

(A) holds at a imique minimizer & EQ. Finally, let {xn} be a sequence

generated by the (GS) with Mn = f"(xn). Then:

i) If (1.10) holds for some v E [2, -), the values rn = f(x) - f(E)
1n

satisfy r = 0(-!-) (at least).
n

(ii) If (1.11) holds for vE(3, -), then rn = O(n-2(V-)/(V(V-)6)).

(iii) If (1.11) holds forv = 3, then r = 0(xn) for some A e (0, 1).
n

(iv) If (1.11) holds forv G [I1, 3), then the sequence {Ilx - &11}

converges superlinearly, i.e., either x = beyond some N, or else
n

liram~ i = 0

Proof. In all cases r 0 by Theorem 2.1, and since condition (1.10)
n

or (1.11) is satisfied here, it follows that lix - Ell 0. It can be
n

assumed, therefore, that for some c > 0 the inequality
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(4.12) (f,(x)) -n > cr,( V (xn)(xh - ),x -

is true uniformly in n > 0.

(i) From Lemma 2.2, Goldstein's rule (2.5), (4.12) and the convexity

of f one has for n > 0

(-.13) f(x) - f(x+ 1 ) > 8w<f'(xn), 2 -S (f
n n n

1

>& ncrn where cI =-minf, c.

Condition (4.12) and Lemma 4.1 with y = , Vn >_ 0, now yield

(4,.14) wn i min(6, (- 2e r 'n 1/ 2 }

1 - _i - 11

> min{6, (26clrn)1/2} where D diam Q.
LD

3

For n sufficiently large, (4.13) and (4.14) give

rfn+l- r.- qr3/2

with

( 2 1/2 3/2
q () (6Sel)q=LD3

This implies rn = 0(4), by Lemma 2.1.
n
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(ii) By using (1.1i) with v E (3, -) in Lemma 4.2 one obtains

.T.1/(L l -* 1), _ 1 /( _ )
(4.15) l) - < () lix n  & (v) forn > o.

Therefore, by the triangle inequality one obtains, as in Theorem 3.3,

r r
(4.16) n > n

IIx - i1 - (11Xn - 01 + I1' -&I)

rn

(Ix - + (L)ll/( -1)1  - 12/(v 1))3

r
n

(D(-3)/(v-) + (L)l/(V-1)) )Ix _ I/(-),

provided xn # F. Also, since f is convex, (1.11) implies (1.10) and one

can write

(4.17) rn > r 1-6(v(v-1))y 6/(v(v-1))Iix -&jP(V-1)

The inequalities (4.16), (4.17), and (4.14) now give

(4.18) wn > min{6, c2rn(v(v-l)-
6 )/(2v(v-1))}

where

26c l 6/(v(v-l)) 1/2= )111
2 L(D(v-3 )/v-l ) + (L)1/(v1))3

Y
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Finally, (4.18) and (4.13) yield for n sufficiently large

rn+I . r r n - qr n

with

q = Sc2cI.

The desired result now follows from Lemma 2.1.

(iii) From (4.13) it is easy to see that if w > w > 0, Vn > 0, then

rn = O(An) with X = max{O, 1 - Sci w). When (1.11) holds with v = 3, it

follows from Lemma 4.2 that

(4.19) ll _I (L)I/2
¢ .1 ) Il n  -) 1 < 7 n  - &11,

and using the triangle inequality one finds that

(4.20) IIxn - 1I3 < (1lx - 1I + Ii- &11)3  ( + (L)l/2)31kn - &11.

Since rn > (f,(E), x - > ylkn_ - t11 (4.20) and (4.14) combine to

yield

w > min{6, ( (y)2 = > 0.n L(l+ (L) 2)3
Y

(iv) When (1.11) holds with v E (1, 3), then Lemma 4.2 states that if

x # E, then
n

(4.1) I1in - &1ll (L)I/(v-~l 11(3-v)/('v-l)
IIxn - -Y n

. i
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It will now be shown that w= 1 (and consequently xn+1 n xn ) for n
nn

sufficiently large; this result, together with (4.21) implies that xr

converges superlinearly to &.

Goldstein's rule selects wn = 1 if g(Xn, n, 1) > 6 for the given
1

6 E (0, 1). From the definition of g(x, , ) and Taylor's formula one

has

f(xn ) - f(in)
(4.22) g(x n in 1) =

(f'(n), Xn - *X >
(, n Xn n

1
1 (x n - n n 'n n

(f'(x), x n

for some e [0, 1],

provided x n F. Since f" is Lipschitz continuous, it follows that

(f"(X)(X n -i )x -i )

(4.23) g(x, > 1 n n n n n
2 (f(x n ), xn - Xn)

LIIx n -n

2 <f'(x), x -

For any operator M and each fixed x E Q, Q(M, x, ") is a functional on

i and if x minimizes Q(M, x, .) on Q then x is an extremal of Q(M, x,

If M is symmetric, then (2.1) yields

<( (x) + M) - x), z - 0 , Vz .
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In particular, for z = x this gives

(4.24) (f'(x), x - i) > (M(x - x), x - i>.

Since f"(x n ) is symmetric and nonnegative one can use (4.24) in (4.23)

to get

L113LIIx n - inli

(4.25) g(Xn' Xn' 1) > -n
(f'(x n), xn - x n

From Lemma 4.2 with assumption (A) one has

(4.26) (f'(Xn) xn > c Ylx - ,where = min{l, c}.
(f'Xnl n ") c n 1 n2

Furthermore, Lemma 4.2 and the triangle inequality yield

(4.27) Ixn - i ll3 < (lx - Ell + Ilin - 1)3
(4.7) 11n nnn

_ (L)IL /(v-1)I~ 1/ x
< (lIx - E11 + (L) IliV n - E)

(1 + (L )l(v-1)D(3-v)/(v-1))31k E

Together, (4.27), (4.26), and (4.25) give

L(l + )/(v-l)D(3-v)(v-i))3g(n ) 1 + Ilix 11I3-v

' ' 1- 2 cy -n'

and since llXn - El - 0 one can conclude that for any fixed 6 E (0, ),

there is a sufficiently large N(6) such that

- .. 3.
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g(x, xn, 1) > 6 for n > N(6).

If (1.11) holds with v = 1 then x = for n > N for some N < by

Theorem 3.4.

QED

Proof of Lemma 4.3. Let B() = {x E B0: (f"(x)(x - ), x - E) > 0.
p P

Then since (f'(x), x - ) > f(x) - f(E) when f is convex, it is sufficient

to show that

(.28) Wf'(x), - > -
(.) -x - ), x - 0 C > 0 Vx e P n (

for some p > 0

One can expand f(x) - f(E), (f'(x), x - 0 and (f"(x)(x-E), x - ) with

Tt4lor's formula and use the Lipschitz continuity of f(5) to obtain

(4.29) f(x) - f(E) = (f'W, x-

+ I -L-( f (w)x on x-) + rl, x),

n=2 n

(h.30) ( f'(x), x- 0 = ( f'(E), x- 0

+n2 -)! ( ()(x - 1n , x - 0 + r2 ( , x),

I . 2
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(4.31) (f"(x))(x- ), x- 10 = 1 T T < f(n)(x)(, _ , _ -

n2

+ r3 (E, x),

where f (k)() is the k h- differential of f at E (for a discussion of

higher order derivatives and Taylor's formula in Banach spaces, see, e.g.,

Vainberg [27]). The terms rl( , x), r2 (C, x) and r3 (&, x) satisfy

(4.32) Irl(&, x)I = jI. ((f(5)( + 01(x - 0) - f ())(x _ ) , x - 0!
5!

(4.33) Jr2 (&, x)J < 1j- -

(4-34~) Ir(~ X) I ~-LIx-

Each x E S can be expressed as x = + tu where u is a unit vector and t

is a scalar parameter. Therefore,(x - ) = tu and instead of (4.30), for

example, one can write

(4.35) (f'(x), x - = t (f'(E), u)

5 t n  f(n) ( n-i L 6n=2 (n-!)! f Wu ,

which is valid for all pairings (t, u) satisfying + tu E 9. Using

the notation an(C) - n (fn))n-, u) , for n = 1, ... , 5, one obtains
n n

from (1.11), (4.35) and the convexity of f on Q

* --.---.
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(4.36) yt5 < f(x) - f(V) < (f'(x), x -

5
I na (Ci)tn L t6.

n=l

Consequently, for & + tu E a and for t sufficiently small, say t < t, one

has

(4.37) 5 5 > 1n=l

Also, in the simplified notation, (4.31) and (4.34) become
5

(4.38) ( f"(x)(x - ), x - _) < n(n - l)an(U)tn + Lt 6

Sn=2 3!

and for x E Q f B( ), (4.28) has the lower bound
5 tL 6

1 nan (u)tn -
(43)fit ), x-. > n=1 > 0

((.3x 5f"(x)(x- ), xL- f6

I n(n-l)an (u)tn + - t
n=2

in view of (4.36) and (4.37). Furthermore, using (4.37) one obtains for

x Q n l (t

LL6 tL
<- I 5 , < Ct with cI =3Y'

na (Ii)tn  n nancf, it
n=1 n=l

and (4.39) then gives

(44o) (f'(x), x - ) 1- ct

(f"(x)(x- ), x - ) A(t, u) + c t

. . . . . .. . . . .., .. .. , . . i I[ . .. t' .. . .. . . -. ..
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where

5n
I n(n - 1)%(u)t n

(.41) A(t, ) = n2• 5
I. nan ( 'a) t n

n=

If it can be shown that A(t, ) c2 for some constant c2 < and for

all (t, a) pairs satisfying + tui E Q r) i(), then (4.28) will follow

from (4.40) since

x - 1 c tf'(W) x -_E) 1 l
(4.42) (f"(x)(x - c), x - t c2 + clt > c>

for t sufficiently small. Note that since is an extremal, a(U) > 0;

therefore, one can write

54al(u)t + [ n(n - l)an(Ui)tn

nan (a)tn
n=1

4 6a 2 ()t 2 + 6a 3 (ui)t 3 + 4a()t 4

5
na()t

n

n1l

It it can be established that

(4.44) 6a 2 (C)t 2 + 6a 3(W)t3 + 4a 4 (ai)t 4> -c3t5

for some c3 > 0, and for (t, u) satisfying t + tu E Q r B( ) with

t < t, then (4.43), (4.44), and (4.37) would yield

I M O d
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2c 3
A(t, ) 4 + for (t, a) satisfying + tu E Q n (

Yt

To show that (4.44) is true note that convexity of f implies that

0 < (f"(x)(x- ), x-

5 n L 6<_Xn(n - 1)an(a)tn + TI t "

Also, Ia(uD( < - Iff ()l < -. Therefore,

(4.45) 2a2 (ai)t 2 +.6a 3( i)t
3 + 12a4 (Ci)t 4

>-( -lf (5)(l + _ t)t5 > -c t5, for some c >0

33!5' 5-0'

for t sufficiently small, say t E (0, £). Writing (4.45) as

2 3(4.46) 6a2(i) + 18a3(a)t + 36a 4 (Ci)t >-3c5t

and making the change of variables T = 3* yields

3

(4.47) 6a2() + 6a3(&)T + 4a4(&)T2 >

which is valid for T e (0, 3t). This proves that (4.44) is true at

least for t 6 (0, t) with c c (4.28) follows for p min(t, t

3  9 '2c 1

QED

Remark 4.2. For certain extremals encountered in optimal control theory

the exponent v in (1.11) can be calculated; this was discussed in

Remark 3.2. Let U E R be the unit ball, and as in Remark 3.2, let the

constraint set Q be the set of functions

- .~A
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Q {measurable u('):(O, 1] -, U} C L ([0, 1], Rm).

If E(t) is piecewise continuous with range on the boundary of U, and if

an associated switching function grows fast enough near its zeros, then

it can be shown (Dunn [i]) that (1.11) (or (3.50)) holds for any v in

the range 2 < v < -. For the conditional gradient method (M = 0 in the

( s)), linear convergence is not guaranteed by Theorem 3.3, and computer

simulations suggest sublinear convergence for a simple example with such

a minimizer. On the other hand, Theorem 4.1 and Lemma 4.3 prove superlinear

convergence for Newton's method in this setting when f satisfies the

hypotheses of Lemma 4.3 (see Remark 4.1 also).

L °
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5. Convergence Rates for Nonconvex Functionals

In Theorem 2.1 it was shown that limit points of a sequence xn

generated by the (GS) are extremals. This is true for differentiable,

possibly nonconvex functionals f with Lipschitz continuous derivatives

f'. However, convergence rate theorems, presented in this thesis so

far, have been limited to convex functionals; the proofs of these theorems

have depended heavily on the convexity property

(5.1) (f'(x), x - y) > f(x) - f(y), Vx, y G S,

although it was indicated in Remarks 2.4 and 3.3 that such theorems could

be extended to a subclass of functionals which satisfy the weaker pseudo-

convexity condition

(5.2) (f'(x), x - > K(f(x) - f(U)), for some K > 0,

where E E Qf. In particular, linear convergence occurs for certain

methods in the (GS) when (5.1) or (5.2) holds with (1.10) or (1.11) for

v = 2. It will be shown in this chapter that conditions (5.2) and (1.10)

with v = 2 hold near an extremal of a (possibly nonconvex) functional f

if, for some p > 0, f satisfies

(5.3) Q(f"(), E, x) > -y11x - ElI2 Vx EK(Q r) B ().

Here K () is the tangent cone to Q at E with vertex at & (see Chapter 1).

If the operator sequence in the (GS) satisfies (1.13) or if Uhe structure

of the set R near is such that (1.11) holds with v = 2, i.e.,
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(5.4) (f'(E), x - ilkc - 1I. Vx E 0, and some y >0,

then Theorem 5.1 shows that if {xn} passes sufficiently near &, it will

converge to at a linear rate. When {Mn ) satisfies certain "quasi-Newton"

conditions, (5.3) need hold only for x E 0 r) B (E) for some p > 0 to

insure linear or superlinear convergence rates; this will be established

in Theorem 5.2.

Lemma 5.1. Let S C X be convex where X is a Banach space. Let f be

twice differentiable with f" continuous at E and let f satisfy (5.3) at

for x E S r) B ( ) and some p > 0. Then for some P1 > 0

(5.5) f(x) - f(E) > 1llx- dIr Vx E S n B ()

Proof. Using Taylor's formula for x E S -) B ( ) at one has

f(x) - f( ) =(f'( ), x- + ( )(x- ) x- 0
2

= Q(f"(&), F, x) + 1((f,,( ) - f"(&))(x - ), x -
2

> f,, fl,, E 1)l

>_ - ii "( - I)Iplx -l2

for between x and E. By the continuity of f" there exists a pl such

that for lix - Ell < Pl, llf"( ) - f"()ll < Y; (5.5) now follows for

x E S f B (E).Pl

QED

Remark 5.1. The proof of Lemma 5.1 is essentially the same as the proof

of Lemma 2.h in [22].
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Lemma 5.2. Let Q C X be convex where X is a Banach space. Let f be

twice differentiable and let f" be Lipschitz continuous for

xe K (E) ,- B (E) for some p > 0. Let f satisfy (5.3) for

xE K,(&) r BP(C). Then for some p2 > 0 and k > 0

(5.6) (f'(x), x - > k(f(x) - f()), for x r K () n B P )

Proof. Since K,(&) is convex it follows from Lemma 5.1 that

f(x) - f(C) > 0 for x C K,(C) r) B1 (E) for some p1 < p. It must be

shown, therefore, that for some p2 < p1, and some k > 0, and for x

( x >k for x E K (r) B (C).

From Taylor's formula and the Lipschitz continuity of f", one can write

for x and x E K() ) B P()

f(x) - f(d)(5.8) Q(f"(7), &, x)

(f (C),x - C) + -(f"(C)(x - C), x - ) + c.lx - €II 3

> 1 + c211x - 11'

where

c1
c2 Y



70

Similarly, one obtains

(5.9) f'(x)a x-
Q'(:"(&). E, x)

(f,( ), x - + f f,'(&)(x - ), x - E) - c lx - gi 3

(x 0, x - &0
> 1- f",--x7- -c

Let x = + tu for a a unit vector in K (), and let R(t, Ci) be defined

for t E (0, p] by

1 t2( f,,(E) ,

(5.10) R(t, 2= 2

t(f'(&), a) + 1-t2( , i)

Whenever (f"(O)u, u) > 0, then R(t, u) > 0 and (5.9) yields

(5.11) (f'(x), x &>

On the other hand for any u for which (f"( )u, a) < 0, it must be shown

that IR(t, u)I < c3t for some c3 < w- If this is so, then from (5.9) one

has

(5.12) (f'(x) , x - 1 - IR(t, a)f - c2t > 1 - (c3 + c2)t,

and for t sufficiently small (5.7) will follow from (5.8), (5.11), and

(5.12). For u E KQ( ) and for t E [0, p], (5.3) gives

t(f'(E), u) + L t 2(f()u, u> t 2 .

2•,yt
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In particular, for t = p and (f"(6)u, u) < 0, one has

f') > (Y f F( 6G )P > 0

in which case, one can write for t E [0, p]

2

>__typ - t(p - 0t)(O ), 3>> t(yp).

Consequently, for t E (0, p] and (f"(6)u, ) < 0, (5.10) yields

IR~tu) "< It 2 f( ) a )0 < Ii f"l(&)I~ =1 t

' -- 2typ - 2yp t ct

QED

Roughly speaking, Lemmas 5.1 and 5.2 show that the functional f is

"locally pseudoconvex with respect to E" when condition (5.3) holds.

Theorem 5.1. Let Q C X be convex where X is a Banach space. Let f be

twice differentiable with f" Lipschitz continuous for x E K (E) I B (c).
P

Let f satisfy (5.3) for x E K (6) fl B (E). Let either (1.13) be satisfied
p

by the operator sequence {M }, or the structure of the set near & be suchn

that (5.4) holds. If {x n }, a sequence generated by the (GS), comes

sufficiently near E, then xn and rn = f(xn ) - f( ) = 0(Xn), for some

x E Fo, 1).

Proof. By Lemmas 5.1 and 5.2 and condition (5.3) there is a p such that

(5.13) (.f'(x), x - > k(f(x) - f(6)) > kIIx -

for xE f B() C K() n B().
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Furthermore if L is a Lipschitz constant for f', and if (M n  satisfies

(1.13), then (3.32) in Lemma 3.1 becomes

(5.14) 214UIIX - E I f , - ;E

< (L1 + K)IIxn - fIin - EII, Vn > 0,

where K is a uniform bound on IlMIt. On the other hand, if (5.4) holds

then (3.32) becomes

(5.15) i (M (i - V, in - V; + i-Fi1

. (L1 + K) Ik n - ElIii n - EIi, Vn > 0.

Since f(x) - f(E) > 0 in a small neighborhood around E, it follows that

E is an extremal, i.e., (f'(E), x - E) > 0, VxE n, hence (5.14) yields

(5.16) IlIn - II <. clx n - lil Vn > 0and c = 2(L1 + K)/u

Similarly the nonnegativity of M in (5.15) gives (5.16) withn
= - =L-p1  e

c (L1 + K)/y. In either case, when 0 < IIxn EII < P2 then

Bxn G iB l (E). Let A = (x e Q r) B l():f(x)- f(&) < P p2}. Then

(5.13) implies that A C 0 fl B (&). Since f is continuous there is a

P3 > 0, such that if x E Q fl Bp3 () then x E A. It follows then that if

6 C Q r) B (F) for some N > 0, then xn E Q n B (F) for n > N. This is

true because 'N C 0 n BP (&), and since XN+l is a convex combination of

xN and N, then xN+ 1 E B (F). But from Theorem 2.1 line (2.25) and

Lemma 5.1, f(;) <_ f(x+ 1 ) < f(xN ) and, therefore, XN+1 E A C n r B 2 (F).

By an induction argument x n E Q r) B ( ) for n > N. Also, since

(f'(xn), Xn - ) >#iIX - Fir for n > N it follows that F E O(x), and

Lemma 2.2 and (5.13) yield
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(f,(xn), x -

if (Mn( n - g), x - =

(5.17) (f'(xn), xn - xn > 1 (f,(x ), x-
min{(f'(x), xn r - ), KIIxn -Ir

if(m (x -), x - v > 0

k min{(f(x) - f()) h-((Xn) _ f(- )
2 n2K n

>c4(f(x n ) - f(E))

where c4 min{1, }> 0. From (5.16), (5.17), (2.23) and the

whre = mi2 l 2K(51)

triangle inequality one now has

(5.18) w> n in{l, 26c(f(Xn) - If())
-LlIIx - Xnl }

> min{l, 6} yk I- = W > O,
--~ ~ L L(l + C)21 I

where L1 is a Lipschitz constant for f'. Finally, (2.25) gives

f(xn ) - f(n) - f~(X+ I ) + f( ) > 6wc4 (f(xn ) -

or equivalently

r n+ <(1 - 6wch)r
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and rn = 0((l - wc4 )n) = o(An). The linear convergence of (rn, together

with (5.13) implies that {Iixn - &II} converges to zero at a linear rate.

QED

The hypotheses of Theorem 5.1 can be weakened somewhat when the

operators M are so called "quasi-Newton" operators. If the M 's aren n

symmetric and approach the second derivative operator f"(E) in the sense

of (1.18) - (1.21) then (5.3) need hold only for x E r) B (&) and f"

need only be continuous at & to establish linear and superlinear rates

of convergence near .

Theorem 5.2. Let Q C X be convex where X is a Banach space. Let f be

twice differentiable with f" continuous. Let f satisfy (5.3) for

x E 0 n B (&) for some p > 0 and & C r2. Let {Mn } be a sequence of

symmetric operators in the (GS), i.e.,

(M x,y = My, x), Vx,yE X, n >0.

Then:

i) If (1.18) or (1.19) holds with e sufficiently small and n > N,

and if {xn } is a sequence generated by the (GS), there exists a p1 > 0

such that if x n0E a n B (&) for some n > N, then {IIxn -&1} converges

to zero at a linear rate, i.e., for some X E (0, 1)

Iixn+l - I< XIx - II, for n > n0
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(ii) If either (1.20) or (1.21) holds then {llxn - &111 converges

superlinearly, i.e., either xn = n eventually, or

illxn+l - &II
TnX; = 0.

Proof of (i). It will first be shown that if x is sufficiently closen
0

to & with n0 > N, then ll~n - II < cllxn  - &11 for some c E (0, 1), and,
0 0

by induction, that 11xn - &II < clix - &II for n > n0 . Then it will be

established that wn > w > 0 for n > n0 and that this implies that

IIxn+l - &11< Ali n - II for some X C (0, 1) and for n > nO . To show that

lix - I< clix - I for some c E (0, 1) and n > no, let x satisfy for

any n > 0

(5.19) 0 < Q(Mn, Xn, ) - Q(Mn, X, Xn).

Then inequality (3.1) in Lemma 3.1 holds with n replaced by xn, and with
nn

the symmetry of Mn one can write

1 (Mn( - 7) - &) + (f'( ) T
n n

n X -n), n -

With the Mean Value Theorem, this implies

l((n  n n,()( )x- + Q(f") n,
2 n n

for nn - f"n+n))(xn - n x xn - E 1

for n : X + en( - Xn), en [0, l].

Jn
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Consequently, for xn E 0 n B (F) condition (5.3) and the triangle

inequality yield for x # E,n

n x-
(5.20) (M . - "F;)xl-;ill n-X I

IlcMn  f"(0;)(Xn -)1 O lf"-fCnl~ln 11 1
< + ,"t- &-- -- 0

Ilxn - ;ll

or

(5.21) . -I1Y - f"WF)illIxn - o112

(IIM - f"(1)l + llf"(&) - f"C )ll ix - F11 IIX' - F11.

Suppose (1.19) holds. Then since f" is continuous, there is a p1 r (0, p)

such that if x E Q nl B (E) and x E a n B (W) for n >N, then (5.20)
n p n P1

and (1.19) with c sufficiently small imply

(5.22) 11n - I I <clIx - E ,

where

C + Iif"(F;) - f"(4n)l1
c=(C ) <1.

Let xn E r) B 1(&) for some no-> N. Suppose that lno - &1I > p, and

(Xn - 0

let x n  0 -+-p Since Q(M ,x n , ) is convex andno let -0I, 0 0 n 0 0 0
0

minimizes Q(Mn , x , ) on 2, one has
n 0
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(5.23) Q( , Xn i) <Q(Mn ,x 0, x )n Q(M 0 n 0

Therefore, x satisfies (5.19), and since lx - Ell = P, (5.22) holds.
0 0

But (5.22) gives 11-0 - 411 < cllx - 11 < P1 < P, and this contradiction
O 0

proves that iI, - E11 < p. From (5.23), (5.19), and (5.22) there results
0

n - 411 < clll - 11, for some c e (0, 1).
0 

0

It follows by induction that for n> n o , xn E 0 1 B (&) and

(5.24) I n - E11 1 cllx - 11.

If (1.18) holds then (5.24) follows by the same argument. To prove that

fl(Xn - C(I( converges at a linear rate it suffices to show that wn >-- > 0

since, one can then write for n > no, xn  E ,

(5.25) I!xn+l El 41 lxn  
+  ( n( Xn C +  -Xn) - 1

Ixn - 11 - I1xn - C11

(1 - wn)llx n  - +ll + nln - E11

-Ixn  - 4ll
W( - An ) + WO c

n n

= 1- (1- c)

< -- i ai -i



78

To prove that wn > w > 1 observe that for xn E Bp(C)

(5.26) -Q(M, x. 'n) > -Q(M_ x~,~

= Q(f"( ), F, xn ) - Q(f"(¢), , xn ) - Q(M , xn , n )

>yIn - - ((f'() - fU(x ), x -

+ .f"(&)(xn - x + ( Mn(x - 0) X -

The Mean Value Theorem, the triangle inequality, and (5.26) give for xn

(5.27) (f'(xn), xn - - .M(x - , x- )

> yItn -k II + (f"( )(xn - Ej, xn -

2 1f, n - n ) 2 n n- n x -

> - 11r"(c) -

(fi(f"(n) - f"(;))(xn -nII + 11(f"(E) - Mn)(xn - )II

S" - M )X --)It

> (Y- IIf"( f0) - f"(1;)l& - x n - -; 011)IIxn- ll2
-- + ( xn  )  en El[,l

where n xn+ ( - Xn) n to, 11,

or

(5.28) (f'(xn)n x - xn

>_ Y ll "( n ) - "( ) F- llf"(&) -MnII)Ilx n - IF.
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Suppose (1.19) holds with e small enough. Once again, since f" is

continuous, there is a p2 E (0, p) such that if x n c Q n B 2 for

n > N then (5.27) yields

(5.29) (f'(Xn) X -- - > 0.

From (2.23), (5.22), (5.29) and the triangle inequality one has, for

x n and n > n > N,

26yI n - 1

(5.30) wn > rain{l, n 4
Llx - x12

> min{l, 26-y1x n - E112
L(Ilxn - Ell + IIxn - 11)2

> min{l, 2y = w > O.
L(I * c) 2

Finally, if x n0E B (E) for some n > N, then from (5.25) and (5.22)
no p2  o0-

it follows that {llxn - EI} converges to zero at a linear rate. The same

result can be established when (1.18) holds using (5.28) and the same

argument.

Proof of (ii). Condition (1.20) implies condition (1.18); therefore,

the results of (i), (1.20), (5.21) and the continuity of f" yield

(5.31) kxn - i_ n - Ell, where Xn 0.

31 E
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Also, (5.31) follows from the results of (i), (1.21), (5.20) and the

continuity of f". One need only show that after a finite number of

iterations w. a 1 for the remaining iterations. Fix 6 E (0, 1). Then

from (4.22) one has, for x not an extremal,

1 ( it(.Un n) ,i.. xn )- - xc, 1

(5.32) g(xn' ) -

n f'(Xn). xn - n

(Mn(xn - Xn) , xn - n̂ )

2(f(xn), xn - n

- M)(i - X)III i -xIl

2(f'(xn) , x - in )

From the triangle inequality, (5.32) and (4.24), which is valid for

symmetric operators n there results

( 5 .3 3 ) -i n , 1 > 2 2 1 f " ( ) I I I n - x n l 22< f'(2Cn) , xn - n

- Mn)(x n - ;)11

I - IIx -E lI n n

2(f'(xn) xn - Xn)

- Mn)( n -

II n -
II^

2( f' (x n ), xn  'n

n n n

____________________________________

-, .1 .~.j
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Also, (5.22), (5.29) and the triangle inequality yield for x6 6 a B (i),
02

U ( + C) 2

(5.34) g(x.n . ' 1) 2_ 2c 2  ir"(s) -"

1 + c) II(f"(C) - M)(xn - )11
2Y Ilx, - II

c(l + c)IIf"( ) - )(i n-)1
2j II n C11

or

1 + c)2 I1 f",(%) -f")l
(5.35) g(x., , 1) > +_C)

_ ( c) IIf"() - Mnil

2Y

c(1 + c)I- M11.
2Y

Finally, the continuity of f" and (1.20) in (5.35) or (1.21) in (5.34)

give g(xn, xn, 1) > 6 for n > N1 (8) with NI(6) < .

Remark 5.2. The proof of Theorem 5.2 is a modification of the proofs

in [221 for Newton's method.

• .
-'t - - • •- . ........
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